CONTACT RESISTANCE MODELING

Authors

DOI:

https://doi.org/10.15588/1607-6761-2018-1-3

Keywords:

contact resistance, real area, electric potential, nuclear membrane

Abstract

Purpose. To determine the contribution of the real contact spots distribution in the total conductivity of the conductors contact.

Methodology. The electrical contact resistance research was carried out on models. The experimental part of this work was done on paper with a graphite layer with membranes (the first type) and conductive liquids with discrete partitions (the second type).

Findings. It is shown that the contact electrical resistance is mainly determined by the real area of metal contact. The experimental dependence of the electrical resistance of the second type model on the distance between the electrodes and the potential distribution along the sample surface for the first type model were obtained. The theoretical model based on the principle of electric field superposition was considered. The dependences obtained experimentally and calculated by using the theoretical model are in good agreement.

Originality. The regularity of the electrical contact resistance formation on a large number of membranes was researched for the first time. A new model of discrete electrical contact based on the liquid as the conducting environment with nuclear membrane partitions was developed. The conclusions of the additivity of contact and bulk electrical resistance were done.

Practical value. Based on these researches, a new experimental method of kinetic macroidentation that as a parameter of the metal surface layer deformation uses the real contact area was developed. This method allows to determine the value of average contact stresses, yield point, change of the stress on the depth of deformation depending on the surface treatment.

Author Biographies

S. V. LOSKUTOV, Zaporizhzhia National Technical University

Sci.D, Professor, Professor of department of physics

M. O. SCHETININA, Zaporizhzhia National Technical University

laboratory assistant, department of aero-engine technologies

O. A. ZELENINA, Zaporizhzhia National Technical University

post-graduate student, department of physics

References

[1] Nitsenko, V., Kulagin, D., & Makhlin, P. (2016). Investigation of errors of current transformers in the protection systems in steady and transient conditions of energy system. Electrical Engineering And Power Engineering, 2, 59-71. doi: http://dx.doi.org/10.15588/1607-6761-2016-2-7. [in Ukrainian]

[2] Barber, J.R. (2003). Bounds on the electrical resistance between contacting elastic rough bodies. Proceedings of the Royal Society of London A, 459, 53-66.

[3] Sawada, S., Shimizu, K., Shimada, S., Hattori, Y. (2010). Prediction of Electrical Contact Resistance of Tin-plated and Silver-plated Terminals. SEI Technical Review, 71, 37-43.

[4] Janiszewski, J., Ksiazkiewicz, A. (2014). Vacuum switches contact resistance. Computer Applications in Electrical Engineering, 12, 227-236.

[5] Kogut, L., Komvopoulos, K. (2003). Electrical contact resistance theory for conductive rough surfaces. Journal of Applied Physics, 94, 31-53.

[6] Pennec, F., Peyru, D., Leray, D., Pons, P., Plana, R., Courtade, F. (2012). Impact of the surface roughness description on the electrical contact resistance of ohmic switches under low actuation forces. IEEE Transactions on Components and Packaging Technologies, 2(1), 85-94.

[7] Korotkevich, S.V., Holodilov, O.V. (2017). Ocenka tolshhiny smazochnogo sloja v podshipnikah kachenija jelektrorezistivnym metodom [The evaluation of the lubricating layer thickness in rolling bearings by an electric resistive method]. Materialy 6-j mezhd. nauch.-tehn. konf. “Sovremennye metody i pribory kontrolja kachestva i diagnostiki sostojanija ob’ektov”. Mogilev: Belorussko-Rossijskij universitet, 382-388. [in Russian]

[8] Duraj, A., Mach, P. (2008). Analysis and Prediction of Electrical Contact Resistance for Anisotropic Conductive Adhesives. Proceedings of 31th ISSE “Manufacturing processes, process simulation and optimization”. Budapest, 358-362.

[9] Pavlenko, T.P. (2013). Opredelenija parametrov sostava kompozicii psevdozhidkometallicheskih kontaktov po matematicheskoj modeli [The determination of the composition parameters of pseudoliquid-metal contacts according to the mathematical model]. Elektro-tehnіka ta elektroenergetika, 1, 14-18. [in Russian]

[10] Read, M.B., Lang, J.H., Slocum, A.H. (2009). Contact Resistance in Flat Thin Films. Proceedings of the 55th IEEE Holm conference on Electrical Contacts, 303-309.

[11] Murashov, M.V., Panin, S.D., Klimov, S.M. (2015). Chislennoe modelirovanie jelektricheskoj provodimosti kontaktov sherohovatyh tel [The numerical simulation of electrical conductivity of the rough body contacts]. Nauka i obrazovanie MGTU im. N.Je. Baumana, 1, 189-200. [in Russian]

[12] Zhai, C., Hanaor, D., Proust, G., Gan, Y. (2015). Stress-dependent Electrical Contact Resistance at Fractal Rough Surfaces. Journal of Engineering Mechanics, 5, 13-19.

[13] Hol'm, R. (1961). Jelektricheskie kontakty. M. Inostrannaja literature, 464.

[14] Demkin, N.B., Ryzhov, Je.V. (1981). Kachestvo poverhnosti i kontakt detalej mashin. M. Mashinostroenie, 244.

[15] Pavlejno, O.M., Pavlov, V.A., Pavlejno, M.A. (2010). Utochnenie granic primenimosti hol'-movskogo priblizhenija dlja rascheta soprotivlenija jelektricheskih kontaktov [The refinement of the applicability limits of the Holm approximation for calculating of the electrical contact resistance]. Jelektronnaja obrabotka materialov, 5, 56-62. [in Russian].

[16] Zatovskij, V.G., Minakov, N.V. (2010). Jeksperimental'noe modelirovanie soprotivlenija stjagivanija [The experimental simulation of the contraction resistance]. Jelektricheskie kontakty i jelektrody, 5, 132- 138. [in Russian]

[17] Flerov, N.B., Barashenkov, V.S. (1974). Prakticheskie primenenija puchkov tjazhelyh ionov [Practical applications of heavy ion beams]. Uspehi fizicheskih nauk, 2, 351-373. [in Russian]

Published

2018-05-31

How to Cite

LOSKUTOV, S. V., SCHETININA, M. O., & ZELENINA, O. A. (2018). CONTACT RESISTANCE MODELING. Electrical Engineering and Power Engineering, (1), 22–29. https://doi.org/10.15588/1607-6761-2018-1-3