Experimental investigation of energy consumption for the process of initial heating of a substrate for the use of electric heat-mechanical system
DOI:
https://doi.org/10.15588/1607-6761-2022-1-5Keywords:
experiment, energy efficiency, initial heating of the substrate, electrothermal-mechanical system, mixing, еnergy consumption, fermentation temperatureAbstract
Purpose. Experimental determination of energy consumption for the process of initial heating of the substrate to the temperature of anaerobic digestion in a biogas reactor using an electrothermal-mechanical system with automatic control to assess the energy efficiency of the process of heating the substrate and the profitability of further processing of the resulting biogas into thermal and electrical energy.
Methodology. Experimental studies of the dynamics of temperature changes in an heating cable placed in an electrothermal-mechanical system, determining the duration of the process and the energy consumed by the initial heating of the substrate, processing and analysis of the obtained data arrays, summarizing the results obtained.
Findings. Biogas technologies play an important role in the formation of a modern energy system, the profitability of which directly depends on the energy efficiency of anaerobic digestion intensification. The process of digestion of waste is long, so one of the main methods of intensification of biogas production is the mixing of waste in the process of anaerobic fermentation. There is a need to improve the energy efficiency of anaerobic digestion intensification and the profitability processing of biogas into heat and electricity. Ways to improve energy efficiency mainly consist in reducing the time of heating the substrate in a biogas reactor, reducing the consumption of electrical energy for the process of thermal stabilization of anaerobic digestion, structural combination of energy-efficient systems for mixing and heating raw materials in reactors, and introducing automatic production systems. The implementation of these actions will make it possible to establish the optimal geometric dimensions of an electrothermal-mechanical system with automatic control for mixing and heating the substrate in a biogas reactor and significantly increase the energy efficiency of biogas plants and the subsequent processing of the resulting biogas into thermal and electrical energy.
Originality. As a result of the experimental study and analysis of the data obtained, it was found that with the same power of the heating sections, the change in the temperature of the electric cable in each blade does not occur in the same way. The authors found that the average value of the temperature of the sections of the electric heating cable of the lower blades is 12.9% higher compared to the upper blades of the electrothermal-mechanical system. In the course of experimental studies, the authors found that when using a heating system made of an electric heating cable mounted in the blades of a two-tier paddle mixer, it consumes J, on the process of initial heating of the substrate from before °С in a biogas reactor with a volume of 40 liters. The duration of the heating itself is 300 minutes. In the course of experimental studies, the authors established the energy efficiency from dividing the electrothermal-mechanical system into heating sections, when each blade is a separate section with its own automatic temperature control of the electric heating cable mounted in the corresponding section, while the consumption of electrical energy is reduced by 27.9%.
Practical value. The results obtained can be used in the design, construction and modernization of biogas production intensification systems, namely, mixing and heating of the substrate in biogas plants. This will improve the energy efficiency of the biogas formation process and the profitability of its processing into heat and electricity.
References
Bereznitskaya, M.V., Butrim, O.V., Panchenko, G.G. (2008). Natsionalny y kadastrantro po gennykh vybrosovizistochnikoviab sorbtsiipoglotitelyamipar-nikovykhgazovvUkraineza 1990–2007 gg. Minister-stvookhranyokruzhayushcheyprirodnoysredyU-krainy, Kyev 2008, 319 p. Rezhimdostupa: http://climategroup.org.ua/upl/ Nac_zvit_p_parn_gazy_90_07.pdf. (inUkrainian)
Ch. McCombie, M. Jefferson. Renewable and nu-clear electricity: Comparison of environmental im-pacts, Energy Policy, 2016, no. 96, pp. 758-769.
D. Weisser. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technolo-gies, Energy, 2007, no. 32, pp. 1543-1559.
IEA Statistics, 2016.
D.-A. Ciupăgeanu, G. Lăzăroiu, M. Tîrşu. (2017). Carbon dioxide emissions reduction by renewable energy employment in Romania, 2017 Internation-al Conference on Electromechanical and Power Systems (SIELMEN), pp. 281-285.
Nezdoyminov, V. I., Zyatina, V. I., Rozhkov, V. S. (2016). Matematicheskoye opisaniye osnovnykh faktorov. Vliya yushchikhna formirovaniye vzvesh-ennogosloya osadkavi lootdelitele. Sucha snepro-mislove tatsivіlne budіvnitstvo, No.2, pp. 51-58. (in Ukrainian).
Kurіs Yu.V. (2012). Bіoyenergetichnі ustanovki. Obladnannya tatekhnologії pererobki organov mіsnikhen ergoresursіv. Zaporіzhzhya: ZDІA, 348 p. (in Ukrainian).
Vedenev, A.G., Vedeneva, T.A. (2011). Rukovod-stvo po biogazovy mtekhno logiyam. 2011, «DEMI», 84 p.
Baader, V., Donet, E., Brennderfer, M. (1982). Biogas. Theoryandpractice. 148 p.
Seminsky, O.O, Mazepa, Yu.V. (2010). Doslіdna ustanovka dlya oderzhannya bіogazuz vіdhodіv ce-lyulozno-paperovogo virobnictva. VI Vseukr. nauk.-prakt. konf. studentіv, aspіrantіv і molodih vchenih «Obladnannya hіmіchnih virobnictv і pіdpriєmstv budіvel'nih materіalіv» Ukraine, NTUU “KPI”, 96 p. (in Ukrainian).
Polischuk V.N., Titova L.L., Shvorov S.A., Gun-chenko Y.A. (2019). Estimation of Biogas Yield and Electricity Output during Cattle Manure Fermenta-tion and Adding Vegetable Oil Sediment as a Co-substrate. In: Problemele Energeticii Regionale. Vol. 43, No. 2, pp. 117-132.
Vasilevich, S., Malko, M., Shevchik, N. (2016). The Use of the Biomass in the Republic of Belarus. Status and Prospects of Development. In: Problemele Energeticii Regionale. Vol. 32, No. 3, pp. 72–77.
Marks, S., Dach, J., Fernandez Morales, F.J., Mazurkiewicz, J., Pochwatka, P., Gierz, Ł. (2020). NewTrendsinSubstratesand Biogas Systems in Po-land.Journal of Ecological Engineering, Vol. 21, No. 4, pp. 19-25. DOI: /10.12911/22998993/119528.
Zablodskiy, M., Kozyrskyi V., Zhyltsov, A., Savchenko, V., Sinyavsky, O., Spodoba, M., Klendiy, G., Klendiy, P. (2020). Electrochemical Characteristics of the Substrate based on Animal Excrement During Methanogenesis With the Influ-ence of a Magnetic Field. 2020 IEEE 40th Interna-tional Conference on Electronics and Nanotech-nology (ELNANO), pp. 530-535.
Atanasoae, P., Pentiuc, R.D. (2017). The qualifica-tion of electricity production in high efficiency co-generation for the access to the support scheme through green certificates. In: Problemele Energeti-cii Regionale. Vol. 35, No. 3, pp. 58-61.
Ratushnyak, G.S., Anokhіna, K.V., Dzhedzhula, V.V. (2010). Doslіd zhennya parametrіv protsesu peremіshuvannya organіchno masiv bіogazov іyustanovtsі zvertik alnimpro pelernimperemі shu-vachem. Vіnnitsya,VNTU, 170 p. (inUkrainian)
Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L. (2008). Optimisation of thea naerobi cdigestion of agricultural resources. Bioresour. Technol. No. 99. pp. 7928-7940.
Ameur H. (2016). Mixingo fcomplexflu idswith flat and pitched bladed impellers: effect of blade attack angle and shear-thinning behavior. Food Bioprod. Process. No. 99, pp. 71-77.
Chervoniy, І.F., Kurіs,Yu.V. (2012). Doslіdzhennya pristroї vtaudosko nalennyaprot sesіvpere mіshu-vannyavbі ogazovikhustanovkakh. Energosbere-zheniye. Energetika. Energoaudit, No. 2, 96 p. (in Ukrainian)
Foukrach, M., Bouzit, M., Ameur H. (2020). Effecto fAgitator’s Typesonthe Hydrodynamic Flowinan AgitatedTank. Chin. J. Mech. Eng. No. 33, 37 p. DOI: 10.1186/s10033-020-00454-2.
Spodoba, M.O., Zablodskiy, M.M., Radko, І.P. (2019). Osnovnі skladovі metodologії pobudo viza-glibnogoe lektromekha nіchnogope retvory uvacha dly abіogazovikhkompleksіv. VMіzhnar odnanau-kovo-praktic hnakonferentsі yaprisvy achena-pam’yatі profesora Vіktora MikhaylovichaSinkova «Problemitaperspektiviro zvitkuenergetiki. El-ektrotekhnolo gіytaavtomatikiv APK», Kyiv, NUBіP. (inUkrainian)
Ameur, H. (2018). Modification sin the Rush-tonturbineformix in gvisco plasticfluids. J. FoodEng. ,223, pp. 117-125.
Ratushnyak G.S., Lyalyuk O.G., Koshcheev І.A. (2017). Bіogazovі ustanovki zvіdnovlyuvani mi-dzherela mienergії termostabіlіzatsії protsesufer mentatsії bіomasi. Vіnnitsya: VNTU, 88 p. (in Ukrainian)
Trakhunova I.A., Karayeva Yu.V. (2012). Effek-tivnost gidravlichesko goperem eshivaniyaprira zlichnykhsposobakhzagruzk iorganichesko gosub-stratavreaktor BGU. Molodoyuchenyy, No.4, pp. 45-50. (in Russian)
Marks, S., Jeżowska, A., Kozłowski, K., Dach, J., Wilk, B., Fudala-Książek, S. (2017). Review of mix-ing systems of fermentation liquid used in biogas plants. Technika Rolnicza Ogrodnicza Leśna, No. 6, pp. 24-26.
KaraevaYu.V. (2013). Modificiro vannayasi stemagidravli cheskogoperemesh ivaniyavmeta ntenkebio gazovojustanovki. Vestnik Ka-zanskogotek hnologiches kogouniversiteta, No.1, pp. 199-201. (in Russian)
Shayakhmetov, R.G. (2011). Issledovanie sposobo-vpe remeshivaniyav metantenkah. Vodoochistka Vodopodgotovka Vodosnabzhenie. Moscow, Vol. 40, No. 4, pp. 18-20. (in Russian)
Shayakhmetov, R.G. (2011). Vliyanie konstrukcij metantenkovna intensi fikaciyup rocessovanaer obnogosbrazhivaniya. Molodoyuchenyy, Vol. 28, No. 5, pp. 113-116. (in Russian)
Pham, C.H., Vu, C.C., Sommer, S.G., Bruun, S. (2014). Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Di-gesters in Winter in Northern Vietnam. Vol. 27, No.7, pp. 1050–1056.
Rashed, M. B. (2014). The Effect of Temperature on the biogas Production from Olive Pomace. Uni-versityBulletinISSUE. Vol. 3, No. 16 pp. 135-148.
Zablodsky, M.M., Spodoba, M.O. (2020). Ob-gruntuva nnyastvorenn yaelekt roteplom ekhan-іchnoї sistemi peremіshuvan nyatapі dіgrіvubіomasi. Energetika ta avtomatika, Kyiv, No.5, pp. 136-148. (in Ukrainian)
Zablodsky M.M., Spodoba M.O. (2020). Viznachennya energetichno efektivnogo rіvnya shvidkostі peremіshuval'nogo organu elektromekhanіchnoї sistemi. Elektromekhanіchnі і energozberіgayuchі sistemi. Kremenchuk, Vol. 52, No. 4, pp. 17-26. DOI: 10.30929/2072-2052.2020.4.52.17-26 (in Ukrainian)
Spodoba, M.O., Zablodsky, M.M. (2021). Zalezhnіst' energetichnih vitrat vіd tipu vikoristanoї mekhanіchnoї mіshalki u bіogazovomu reaktorі. Elektrotekhnіka ta elektroenergetika, Zaporіzhzhya, No. 1, pp. 26-33. (in Ukrainian)
Zablodskiy, M., Spodoba, M. (2021). Dynamic Analysis of Energy Consumption During Substrate Fermentation in a Biogas Reactor, 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), pp. 147-152, doi: 10.1109/KhPIWeek53812.2021.9569995.
Mykola, Z., Mykhailo, S. (2020). Mathematical Model Of Thermal Processes During The Fermenta-tion Of Biomass In A Biogas Reactor, 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), pp. 227-231.
Berzan, V., Postolati, V., Bykova, E., Cernei, M., Volconovich, L. (2019). Trends and Risks in the Natural Gas Supply of the Republic of Moldova Tendințe și riscuri în asigurarea cu gaze naturale a Republicii Moldova. Vol. 42, No. 1-3, pp. 94-114. 10.5281/zenodo.3242741.
Postolatiy, V., Babich, V. (2018). Tariff Policy in the Formation of the Price of Thermal Energy. Problemele energeticii regionale, Vol. 38, No. 3, pp. 170–181.
Zablodsky, M.M., Spodoba, M.O. (2020). Metodika provedennya eksperimental'nih doslіdzhen' bіogazovogo reaktora z zaglibnoyu kombіnovanoyu sistemoyu peremіshuvannya ta elektrichnogo pіdіgrіvu.Proceedings of the IX Inter-national Scientific and Technical Conference "Prob-lems of modern energy and automation in the sys-tem of nature management (theory, practice, histo-ry, education)", Kyiv.
Zablodskiy, M.M., Spodoba, M.O. Power supply of measuring sensors when performing experimental studies of electrical thermal mechanical system. En-ergyandAutomation, 0 (4), Kyiv, pp. 39-48. doi:10.31548/energiya2021.04.03
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nikolay Zablodskiy, Mykhailo Spodoba, Alexander Spodoba
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under aCreative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.