Investigation of electromagnetic processes in the case of static eccentricity of a two-pole induction motor with a short-circuited rotor

Authors

DOI:

https://doi.org/10.15588/1607-6761-2023-4-2

Keywords:

induction motor, static eccentricity, mathematical model, Fourier series, error, magnetic conductivity, amplitude, harmonic

Abstract

Purpose. Correction of the mathematical model of electromagnetic processes in a two-pole induction motor with a short-circuited rotor, taking into account static rotor eccentricity to identify diagnostic correlations.

Methodology. Analytical modeling using the method of specific magnetic conductivity, mathematical modeling of electromagnetic fields in a three-phase induction motor with a short-circuited rotor using methods of electromagnetic field theory and finite element methods.

Obtained results. The necessity of improving mathematical models for induction motors with short-circuited rotors to establish new or refine connections between diagnostic features and diagnosed defects has been demonstrated. Refined mathematical expressions for calculating the specific conductivity of non-uniform air gaps in induction motors with static eccentricity are provided. Modeling was performed using the FEMM environment for a statically eccentric two-pole induction motor with a short-circuited rotor. It has been proven that the harmonic order values obtained using the numerical-field method are consistent with those obtained analytically.

Findings. Based on the field approach and using the finite elements method, an analysis of the distribution of magnetic field in a two-pole induction motor with a short-circuited rotor was conducted. Harmonic analysis of the magnetic field in the air gap was performed to identify the fundamental harmonic and higher and lower-order harmonics when eccentricity occurs. The influence of static rotor eccentricity on the electromagnetic processes of the induction motor was analyzed.

Practical value. The results of the study can be utilized for functional diagnosis of the rotor winding of induction motors based on the radial component of the magnetic field. This will contribute to enhancing the reliability of induction motors and enable the prevention of failure in induction motors with short-circuited rotors.

Author Biographies

I.M. Kotsur, National University Zaporizhzhia Polytechnic

PhD,  Associate Professor of the Electrical Machines Department, National University  "Zaporizhzhia Polytechnic", Zaporizhzhia

M.I. Kotsur, National University Zaporizhzhia Polytechnic

PhD, Associate Professor of the Electrical and Electronic Devices Department, National University "Zaporizhzhia Polytechnic", Zaporizhzhia

D.S. Yarymbash, National University Zaporizhzhia Polytechnic

Dr. Sc. (Tech.), Professor, Head of the Department of the Electrical Machines Department, National University "Zaporizhzhia Polytechnic", Zaporizhzhia

T.Ye. Dyvchuk, National University Zaporizhzhia Polytechnic

PhD, Associate Professor of the Electrical Machines Department, National University  "Zaporizhzhia Polytechnic", Zaporizhzhia

Yu. S. Bezverkhnia, National University Zaporizhzhia Polytechnic

PhD, Associate Professor of the Electrical Machines Department, National University  "Zaporizhzhia Polytechnic", Zaporizhzhia

V.S. Ozerov, National University Zaporizhzhia Polytechnic

Master of the Department of Electric Machines at Zaporizhzhia National University 'Zaporizhzhia Polytechnic', Zaporizhzhia

References

Vaskovskiy, Y.N., Geras'kin, A.A. (2014). Vibrational diagnostics of rotor eccentricity in asynchronous ma-chines based on analysis of vibration forces. Bulletin of the National Technical University "KhPI", 38 (1081). 52–62.

Wallin M., Bladh J., Lundin U. (2013). Damper wind-ing influence on unbalanced magnetic pull in salient pole generators with rotor eccentricity. IEEE transac-tions on magnetics, 49, 9, 5158–5165. URL: https://doi.org/10.1109/tmag.2013.2259633

Novozhilov, A.N. (2013). Diagnostics of rotor eccen-tricity in alternating current electric machines using artificial neural networks. Bulletin of the National Technical University "KhPI", 1, 68-75.

Geller, B., & Gamata, V. (1981). Higher harmonics in induction machines. M. Energiya, 351.

Novozhilov, A.N., & Isupova, N.A. (2013). Features of modeling the magnetic field in the air gap with rotor eccentricity of an induction motor. Electrical Engi-neering, 9, 30-33.

Milikh, V.I. (2018). Numerical-field analysis of the adequacy of design data for three-phase asynchro-nous motors and a method for their refinement based on this. Technical Electrodynamics, 1, 47–55. URL: https://doi.org/10.15407/techned2018.01.047

Yarymbash, D., Kotsur, M., Yarymbash, S., & Ko-tsur, I. (2017). Osobennosti trehmernogo mod-elirovanija jelektromagnitnyh polej asinhronnogo dvigatelja [Features of three-dimensional simula-tion of the electromagnetic fields of the asynchronous motors]. Elektrotehnika i elektroenergeti-ka, 2, 43-50. (in Rus-sian) DOI:10.15588/1607-6761-2016-2-5

Chen H., Bi C. (2022). An effective method for de-termination and characteristic analysis of induc-tion motor parameters. IET electric power applications. 16 (5), 605–615.

URL: https://doi.org/10.1049/elp2.12180

Milikh, V.I. (2018). Automated system for forming calculation models of electric machines for the FEMM software environment. Technical Electrodynamics, 4, 74–78. URL: https://doi.org/10.15407/techned2018.04.074

Thomson W. T. (1999). A review of on-line condition monitoring techniques for three-phase squirrel-cage induction motors-past present and future. Keynote address at IEEE symposium on diagnostics for elec-trical machines, power electronics and drives, 3-18.

Vigovsky, O.V. (2018). Diagnosis of induction mo-tors of nuclear power plant units. Problems of nuclear power plant safety and Chernobyl, 36–40. URL: https://doi.org/10.31717/1813-3584.18.31.4

Lushchik, V.D., Polezin, S.Yu., & Antypko, G.S. (2013). Premature failure of windings in two-pole medium-power induction motors. Electrical Engineer-ing and Electromechanics, 6, 37-39.

Novozhilov, A.N., et al. (2013). Diagnosing rotor eccentricity of an induction motor based on the root-mean-square value of additional harmonic stator currents. Technical Sciences - From Theory to Prac-tice, 27, 1.

Nikiyan, N.G. (2003). Multiphase real asynchronous machine: mathematical modeling, methods, and di-agnostic tools: monograph

Petukhov, V.S. (2005). Diagnosis of the state of elec-tric motors based on spectral analysis of consumed current. Electrical Engineering News, 31, 23–26.

Neelam Mehala (2010). Detecting of bearing faults of induction motor using Park's vector approach. In-ternational Journal of Engineering and Technology, 2. 263–266.

Zhou G.Y., Shen J.X. (2017). Rotor notching for elec-tromagnetic noise reduction of induction motors. IEEE transactions on industry applications, 53(4), 3361–3370. URL: https://doi.org/10.1109/tia.2017.2681969

J. Du et al. (2021). Research on radial electromag-netic force and vibration response characteristics of squirrel-cage induction motor fed by PWM inverter. IEEE transactions on applied super conductivity, 31, (8). 1–4. URL: https://doi.org/10.1109/tasc.2021.3096501

Gashimov, M.A., & Mirzoyeva, S.M. (2002). Inves-tigation for the purpose of diagnosing electromagnet-ic processes in electrical machines with uneven air gap. Electricity, 11, 52-45.

Novozhilov, A.N., & Isupova, N.A. (2012). Investi-gation of methods for modeling air gap size with ro-tor eccentricity in an electric machine. Bulletin of the National Technical University "KhPI", 6, 23-28.

Yondem, M.E., Nikiyan, N.G., & Akopyan, G.S. (1985). Magnetic conductivity of the air gap of an induction machine with rotor eccentricity. Electrome-chanics, 5, 32-35.

Downloads

Published

2024-04-24

How to Cite

Kotsur, I., Kotsur, M., Yarymbash, D., Dyvchuk, T., Bezverkhnia, Y. S., & Ozerov, V. (2024). Investigation of electromagnetic processes in the case of static eccentricity of a two-pole induction motor with a short-circuited rotor. Electrical Engineering and Power Engineering, (4), 17–24. https://doi.org/10.15588/1607-6761-2023-4-2