Generalized parameters of the excitation system of a synchronous drive with impact load

Authors

DOI:

https://doi.org/10.15588/1607-6761-2025-3-3

Keywords:

automatic state machine, powerful synchronous drive, excitation system, solution of optimization problem, mathematical and structural modelling, trend lines of generalized parameters

Abstract

Purpose. To generalize the parameters of the original excitation control system for synchronous drives for the dissemination of their results to powerful production complexes operating in periodic shock load modes, which will contribute to the elimination of accidents due to the destruction of the electromagnetic system structure of synchronous machines of mechanisms of this type.

Methodology. The research used the provisions of the theory of electrical machines, the theory of automatic control, methods for solving optimization problems using the mathematical package MATHCAD, methods and techniques of structural modelling in the MATLAB environment of the SIMULINK component.

Findings. By solving the optimization problem, polynomial dependences of the forcing levels of the excitation system of the synchronous drive were obtained, taking into account the magnitude of the current load and the standard parameters of the elastic coupling, and also the parameters of the PI controller are determined with the refinement of the integral link coefficients, which allows avoiding excessive oscillations in the extreme load rollover process.

Originality. Taking into account the technological conditions of operation of the TPA-350 automatic machine tool for the production of solid-drawn pipes, an original sequence was proposed and polynomial dependences of the generalization of the main control parameters of the excitation system of a synchronous drive operating in the mode of periodic occurrence of extreme loads were obtained and the prospect of using this system as part of industrial exciters for powering inductor windings of powerful synchronous drives of metallurgical and crushing and grinding mechanisms is shown.

Practical value. The obtained polynomial dependences of the main parameters of the excitation control system forpowerful synchronous drives make it possible to recommend specific forcing values to manufacturers and designers, parameters of the PI controller and the intensity setter, which will avoid expensive repairs and downtime of the machine, which are associated with significant financial costs.

Author Biographies

V.A. Borodai, Dnipro University of Technology

Cand. Sci. (Tech.), Associate Professor, Associate Professor of the Department of Electric Drive, Dnipro University of Technology, Dnipro

R.O. Borovyk, Dnipro University of Technology

Engineer, Senior Lecturer of the Department of Electric Drive, Dnipro University of Technology, Dnipro

O.Yu. Nesterova, Dnipro University of Technology

PhD, Associate Professor, Head of the Department of Philosophy and Pedagogy, Dnipro University of Technology, Dnipro

References

Development of recommendations for the operation of the synchronous motor of the main drive of the automatic pipe rolling mill of OOO “INTERPIPE NIKO TUBE”: Research report (final) [Rozrobka rekomendacij z ekspluatacii' synhron-nogo dvyguna golovnogo pryvodu avtomat-stanu prokatky trub OOO “INTERPAJP NIKO T''JuB”: Zvit z NDR (zakljuch.)]. State University "NGU"; Research work was carried out under contract No. 1120/030383 dated 04.12.2012 - Dnipro, 2013. - 34 p. ill. (in Ukrainian).

Grechany O. M., Vasylchenko T., Vlasov A. O., Karmazin M. O.(2021). Analysis of possible ways to increase the productivity of equipment of rolling mill production lines [Analiz mozhlyvyh shljahiv pidvyshhennja produk-tyvnosti obladnannja potokovyh linij prokatnyh cehiv]. Bulletin of Kherson National Technical University, 3, 36 42. (in Ukrainian).

Rakhmanov S.R. (2007). Dynamics of the rod system of the mandrel holding mechanism of the piercing mill of the pipe rolling unit.[Dynamika stryzhnevoi' systemy me-hanizmu utrymannja opravky proshyvnogo stanu truboprokatnogo agregatu]. Materials of the International Conference "Modern Trends in the Production of Welded and Seamless Pipes from Ferrous and Nonferrous Metals", Dnipropetrovsk, 76 82. (in Ukrainian).

Rakhmanov S.R., Morozova L.A. (2009). Dynamics of the drive line of a screw pipe rolling mill. [Dynamika linii' pryvodu stanu gvyntovoi' prokat-ky trub.]. Vibrations in Engineering and Technologies, 2 (54), 76-82. (in Ukrainian).

Rakhmanov S.R. (2011). Research into the dynamics of the piercing process of a pipe billet on a piercing mill. [Doslidzhennja dynamiky procesu proshyvky trub-noi' zagotovky na proshyvnomu stani]. Vibrations in Engineering and Technologies,1, 46-52. (in Ukrainian).

Rakhmanov, S.R., Lagutin, B.N., Topolov, V.L., & Baidzhanov, S.M. (2013). Features of functioning and ways to reduce dynamic loads in the drive line of an automatic pipe rolling unit with a gap in the joints. [Osoblyvosti funkcionuvannja i shljahy znyzhennja dynamichnyh navantazhen' v linii' pryvoda avto-matychnogo stanu truboprokatnogo agregatu z za-zorom v zchlenuvannjah]. Vibrations in Engineering and Technologies,3, 85-91. (in Ukrainian).

Rakhmanov, S.R. (2015). Features of the functioning of the main power line of the automatic pipe rolling unit, taking into account the gaps in the joints. [Osoblyvosti funkcionuvannja golovnoi' sylovoi' linii' avtomatychnogo stanu truboprokatnogo agre-gatu z vrahuvannjam zazoriv v zchlenuvannjah] Metallurgical and mining industry,6, 106-113. (in Ukrainian).

Rakhmanov S. R., Vyshinsky V. T. (2018). Research on the dynamics of the working stand of an automatic pipe rolling mill [Doslidzhennja dynamiky robochoi' kliti avtomatych-nogo stanu truboprokatnogo agregatu]. Metallurgical and mining industry, 4, 74-80. (in Ukrainian).

Balakin V.F., Perchanyk V.V., Bohdan D.A., Ugryumov Yu.D., Kadilyshkov S.V. (2018). Development paths of hot pipe rolling processes [Shljahy rozvytku procesiv garjachoi' prokatky trub]. System technologies. Regional interuniversity collection of scientific papers, Dnipro, 3(116), 104–109. (in Ukrainian).

Khatskelyan I.P., Povorotniy V.V., Vyshinsky V.T., Rakhmanov S.R. (2019). Doslidzhennja napruzheno-deformovanogo stanu robochoi' kliti avtomatychnogo stanu TPA 350 iz zastosuvannjam informacijnyh tehnologij. [Doslidzhennja napruzheno-deformovanogo stanu robochoi' kliti avtomatychnogo stanu TPA 350 iz zastosuvannjam informacijnyh tehnologij]. Computer modeling: analysis, control, optimization, 2 (6,83-90. (in Ukrainian).

Rakhmanov S.R., Hatskelyan I.P., Harmashov D.Yu. (2017). Study of the dynamics of transient processes on an automatic stand of a pipe rolling unit [Doslidzhennja dynamiky perehidnyh procesiv na avtomatychnomu stani truboprokatnogo agregatu]. Plastic deformation of metals. 203-2209. (in Ukrainian).

Rakhmanov S.R., Povorotny V.V. (2020). Dynamics of the working frame elements of the automatic state TPA 350 [Dynamika elementiv robochoi' kliti avtomatychno-go stanu TPA 350]. Metallurgical and mining industry, 1, 57-70. (in Ukrainian).

Rakhmanov S.R., Povorotnyi V.V. (2020). Study of the dynamics of the working frame elements of the automatic mill TPA 350 [Doslidzhennja dynamiky elementiv robochoi' kliti avtomatychnogo stanu TPA 350]. Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information. 76, 8, 830-840. (in Ukrainian).

Povorotny V.V. (2021). Increasing the efficiency of cold pipe rolling mills through rational synthesis of work stand parts [Pidvyshhennja efektyvnosti roboty staniv holod-noi' prokatky trub shljahom racional'nogo synte-zu detalej robochyh klitej], dis. ... candidate of technical sciences: special. 05.05.08 - Machines for metallurgical production. Dnipro, 203. (in Ukrainian).

Krot, P., Prykhodko, I., Raznosilin, V., Zimroz, R. (2020). Model Based Monitoring of Dynamic Loads and Remaining Useful Life Prediction in Rolling Mills and Heavy Machinery. In: Ball, A., Gelman, L., Rao, B. (eds) Advances in Asset Management and Condition Monitoring. Smart Innovation, Systems and Technologies, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-030-57745-2_34

Krot, P.V. (2010). Dynamics and diagnostics of the rolling mills drivelines with non-smooth stiffness characteristics. Proc. of the 3rd Int. Conf. on Nonlinear Dynamic, ND-KhPI2010, September 21-24, 2010, Kharkov, Ukraine,. 115-120. (in Ukrainian).

Reichman, E.N.(1980). Status and prospects of implementing synchronous electric drives in metallurgy [Stan ta perspektyvy vprovadzhennja synhronnogo elektropryvoda v metalurgii']. M.: Informelektro, TS-8, 51. (in Russian).

Boroday V.A., Borovyk R.O., Kotlyarova E.V. (2015). Damping of shock loads of mining and metallurgical mechanisms by means of a synchronous drive [Dempfuvannja udarnyh navantazhen' girnycho-metalurgijnyh mehanizmiv zasobamy synhronno-go pryvoda]. Mining electromechanics and automation: Scientific and technical collection, 95, 47-50. (in Ukrainian).

Borodai V., Borovyk R., Nesterova О. (2017). Efficient Transient Modes of Synchronous Drive for Mining and Smelting Mechanisms. Mechanics, Materials Science & Engineering.Vol.8,8, 133-142. (in Austrian).

Byalobrzesky, O. V., Slobodenyuk D. V. (2013). Dynamic excitation control system for a synchronous motor [Systema keruvannja dynamichnymy rezhymamy zbudzhennja synhronnogo dvyguna]. Mining electromechanics and automation: scientific - technical collection / [ed. chief. G. G. Pivnyak]; Ministry of Education and Science, Youth and Sports of Ukraine, State Higher Educational Institution “National Mining University” - Dnipropetrovsk: NGU, 91, 94-98. (in Ukrainian).

Chugunov D.V., Nizimov V.B. (2024). Ensuring the stability of synchronous motors during voltage drops in the network or when applying a significant load [Zabezpechennja stijkosti roboty synhronnyh dvyguniv pry posadci naprugy v merezhi abo prykladanni znachnogo navantazhennja]. Collection of scientific works of DSTU, 2(45),112-116. (in Ukrainian).

Khomenko, V. I., Nizimov, V. B., & Kolychev, S. V. (2015). Increasing the stability of the synchronous machine by improving the excitation system. [Pidvyshhennja stijkosti roboty synhronnoi' ma-shyny shljahom udoskonalennja systemy zbudzhennja]. Eastern-European Journal of Enterprise Technologies, 1/8(73), 31–36. (in Ukrainian).

Linkov S.A., Sarvarov A.S., Bachurin I.V. (2014). Analysis of control systems for synchronous electric drives [Analiz system upravlinnja synhronnyh elektropryvodiv]. ESiK. Series "Theory and Practice of Automated Electric Drive", 2(23), 25-28. (in Ukrainian).

Slobodenyuk D.V., Bialobrzhesky O.V. (2015). Capacitive storage device in the excitation circuit of a synchronous machine for field forcing and quenching. [Jemnisnyj nakopychuval'nyj prystrij u konturi zbudzhennja synhronnoi' mashyny dlja forsuvannja ta gasinnja polja]. Electrical Engineering and Electromechanics, 2, 16-20. (in Ukrainian).

Babaei M., J. Nazarzadeh, J. Faiz. (2008).Nonlinear feedback control of chaos in synchronous reluctance motor drive systems. IEEE International Conference,4. (in Russian).

Kyrychenko V.I., Shkola M.I., Kyrychenko V.V., Borovyk R.O. (2006). Program-controlled exciter for synchronous motors [Programno kerovanyj zbudnyk synhronnyh dvyguniv]. Science and Innovation, – K., T2, 3, 28-37. (in Ukrainian).

Zadorozhnya I.N., Zadorozhnyi N.A. (2017). Synthesis of an electromechanical system with a limiting degree of stability and minimal oscillation of an elastic mechanical subsystem [Syntez elektromehanichenoi' systemy granychnoi' stupeni stijkosti i minimal'noi' kolyval'nosti pruzhnoi' mehanichnoi' pidsystemy]. Bulletin of NTU "KhPI", 27(1249), 150-155. (in Ukrainian).

Ryabenkyi V.M., Ushkarenko O.O., Dubovik O.Ya., Krylov A.V. (2010). Pat. 62904 Ukraine, MPK (2010) H02M 1/08. Method of forward correction by a generator operating on an asynchronous motor [Pat. 62904 Ukrai'na, MPK (2010) N02M 1/08. Sposib vyperedzhajuchogo koryguvannja genera-torom, shho pracjuje na asynhronnyj dvygun]. Applicant and patent owner: NUK named after Acad. Makarov. Application No. U201100491 dated September 26, 2011. (in Ukrainian).

Ryabenky V.M., Ushkarenko O.O., Dubovyk O.Ya. (2010). Pat. 62906 Ukraine, MPK (2010) H02M 1/08. Method of forward correction by a generator operating on an asynchronous motor [Pat. 62906 Ukrai'na, MPK (2010) N02M 1/08. Sposib vyperedzhajuchogo koryguvannja genera-torom, shho pracjuje na asynhronnyj dvygun]. Applicant and patent owner: NUK named after Acad. Makarov. Application No. U201100496 dated September 26, 2011. (in Ukrainian).

Beshta O.S., Borodai V.A., Balakhontsev O.V., Borovik R.O. (2021). Pat. No. 123955 Ukraine. Method of regulating excitation of synchronous machines [Pat. № 123955 Ukrai'na. Sposib reguljuvannja zbudzhennja synhronnyh mashyn]. Applicant and patent owner National technical university "dnipro polytechnic"; publ. Bull. No. 26 06.30.2021. (in Ukrainian).

Boroday V.A., Borovyk R.O., Nesterova O.Yu. (2018). Compensation of sharply alternating armature current of powerful synchronous drives by means of an automatic excitation system with a non-standard control algorithm [Kompensacija rizko-zminnogo strumu jakorja potuzhnyh synhronnyh pryvodiv zasobamy avtomatychnoi' systemy zbudzhennja iz nestandartnym algorytmom keruvannja]. Electrical Engineering and Power Engineering, 1, 72-80. (in Ukrainian).

Published

2025-10-22

How to Cite

Borodai, V., Borovyk, R., & Nesterova, O. (2025). Generalized parameters of the excitation system of a synchronous drive with impact load. Electrical Engineering and Power Engineering, (3), 25–37. https://doi.org/10.15588/1607-6761-2025-3-3